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Abstract. The similarities between phase separation in physics and residential segregation by preference
in the Schelling model of 1971 are reviewed. Also, new computer simulations of asymmetric interactions
different from the usual Ising model are presented, showing spontaneous magnetisation (=self-organising
segregation) and in one case a sharp phase transition.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 89.65.-s Social and economic systems
– 89.75.-K Complex systems

1 Introduction

More than two millennia ago, the Greek philosopher
Empedokles (according to J. Mimkes) observed than hu-
mans are like liquids: some mix easily like wine and water,
and some do not, like oil and water. Indeed, many binary
fluid mixtures have the property that for temperatures T
below some critical temperature Tc, they spontaneously
separate into one phase rich in one of the two compo-
nents and another phase rich in the other component. For
T > Tc, on the other hand, both components mix what-
ever the mixing ratio of the two components is. Chemicals
like isobutyric acid and water, or cyclohexane and aniline,
are examples with Tc near room temperature, though they
smell badly or are poisonous, respectively. For humans,
segregation along racial, ethnic, or religious lines, is well
known in many places of the world.

Schelling [1] transformed the Empedokles idea into a
quantitative model and studied it. People inhabit a square
lattice, where every site has four neighbours to the North,
West, South and East. Everyone belongs to one of two
groups A and B and prefers to be have neighbours of the
same group more than to be surrounded by neighbours of
the other group. Thus with some rule depending on the
numbers nA and nB of neighbours of the two groups, each
person moves into a neighbouring empty site. After some
time with suitable parameters, large domains were hoped
to be formed which are either populated mostly by group
A or mostly by group B. A simpler and better version of
Jones [2] indeed gave these large domains.

Physicists use the Ising model of 1925 to look at sim-
ilar effects. Again each site of a large lattice can be A or
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B or empty; A and B are often called “spin up” and “spin
down” in the physics literature referring to quantum-
mechanical magnetic moments. The probability to move
depends exponentially on the ratio (nA−nB)/T calculated
from the neighbour states. A B “prefers” to be surrounded
by other B, and an A by other A. The lower this temper-
ature or tolerance T is the higher is the probability for
A to move to A-rich neighbourhoods, and for B to move
to B-rich neighbourhoods. Therefore at low T an initially
random distribution of equally many A and B sites will
separate into large regions (“domains”) rich in A, others
rich in B, plus empty regions. In magnetism these domains
are called after Weiss since a century and correspond to
the ghettos formed in the Schelling model.

This effect can be seen easier without any empty sites.
Then either a site A exchanges places with a site B, or
a site A is replaced by a site B and vice versa, where in
the above probabilities now nA and nB are the number
of A and B sites in the two involved neighbourhoods. Or,
even simpler, a site A changes into a site B or vice versa,
involving only one neighbourhood. The latter case can be
interpreted as an A person moving into another city, and
another person of type B moving into the emptied resi-
dence. The physics literature denotes the exchange mech-
anism as Kawasaki kinetics, the switching mechanism as
Glauber (or Metropolis, or Heat Bath) kinetics. Again,
at low enough T large A domains are formed, coexisting
with large B domains. In the simpler switching algorithm,
finally one of these domains wins over the other, and the
whole square lattice is occupied by mostly one type, A
or B.

The above T can instead of temperature be interpreted
socially as tolerance: for high T no such segregation takes
place and both groups mix completely whatever the over-
all composition is. Instead of “tolerance” we may inter-
pret T also as “trouble”: external effects, approximated
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as random disturbances, may prevent people to live in
the preferred residences, due to war, high prices, low in-
comes, peculiarities of the location, .... Some of these ef-
fects were simulated by Fossett [3]. Without these empty
sites, we may also interpret A as one type of liquid and B
as the other type, and then have a model for the above-
mentioned binary liquids which may or may not mix with
each other via the Kawasaki exchange of places. Alterna-
tively, we may interpret A as a high-density liquid and B
as a low-density vapour and then have a model for liquid-
vapour phase transitions: only below some very cold tem-
perature can air be liquefied. The first approximate the-
ory for these liquid-vapour equilibria is the van der Waals
equation of 1872.

Thus Schelling could have based his work on a long his-
tory of physics research, or a film of computer simulation
published in Japan around 1968. But in 1971 Schelling
did now yet know this physics history [4] and his model
was therefore more complicated than needed and was at
that time to our knowledge not yet simulated in the Ising
model literature. Schelling did not consider T > 0 and at
T = 0 his model has problems (see below) with creating
the predicted segregation. Even today, sociologists [3,5–7]
do not cite the physics literature on Ising models (and also
ignore [2]. Similarly, physics journals until a few years ago
ignored the 1971 Schelling publication [8], though recently
physicists extended via Ising simulations the Schelling
model to cases with T increasing with time [9] and in-
volving more than two groups of people [10]. However, ap-
plications of the Ising model to social questions are quite
old [12].

In the following section we point out an artifact in
the old Schelling model and a simple remedy for it, com-
ing from the rule how to deal with people surrounded by
equal numbers of liked and disliked neighbours. We ex-
plain in the next section in greater detail the standard
Ising simulation methods using the language of human
segregation. Then we present two new models. One takes
into account that human interactions, in contrast to parti-
cles in physics, can be asymmetric: if a man loves a woman
it may happen that she does not love him, while in Newto-
nian physics actio = –reactio: an apple falls down because
Earth attracts the apple and the apple attracts Earth. The
other model introduces holes (empty residences) similar to
the original Schelling work, with symmetric interactions.
Also, we check for sharp transitions and smooth interfaces
in a Schelling-type model.

2 Artifact in Schelling model

In Schelling’s 1971 model, each site of a square lattice
is occupied by a person from group A, or a person from
group B, or it is empty. People like to have others of the
same group among their eight (nearest and next-nearest)
neighbours and require that “no fewer than half of one’s
neighbors be of the same” group (counting only occupied
sites as neighbouring people). Thus, if a person has as
many A as B neighbours, then in the Schelling model that
person does not yet move to another site. Imagine now

the following configuration with 12 people from group B
surrounded by A on all sides:

A A A A A A A A
A A A A A A A A
A A A B B A A A
A A B B B B A A
A A B B B B A A
A A A B B A A A
A A A A A A A A
A A A A A A A A

In this case not a single B has a majority of A neigh-
bours, and all A have a majority of A neighbours. Thus
none would ever move, and the above configuration is sta-
ble. (Similar artifacts are known from Ising models at zero
temperature [11].) One can hardly regard the above con-
figuration as segregation when 8 out of 12 B people have
a balanced neighbourhood of four A and four B neigh-
bours each. And this small cluster does not grow into a
large B ghetto. Also larger configurations with this prop-
erty can be invented. In fact, at a vacancy concentration
of 30% and starting from a random distribution our sim-
ulations gave only small domains, with no major changes
after about 10 iterations.

To prevent this artifact one should in the case of
equally many A and B neighbours allow with 50 percent
probability the person to move to another place; and we
will implement such a probabilistic rule later.

3 Ising model

Fossett [3] reviews the explanations of segregation by pref-
erence of the individuals or by discrimination from the
outside. In Schelling’s model [1], preference alone could
produce segregation, but in reality also discrimination can
play a role. For example, Nazi Germany established Jew-
ish ghettos by force in many conquered cities. A simple
Ising model without interactions between people can in-
corporate discrimination with a field h. We assume that a
site which is updated in a computer algorithm is occupied
with probability pA proportional to exp(h) by a person
from group A, and with probability pB ∝ exp(−h) by a B
person. Properly normalized we have

pA = eh/(eh + e−h), pB = e−h/(eh + e−h) (1)

leading to

−M = (eh − e−h)/(eh + e−h) = tanh(h) (2)

for the relative difference M = (NB − NA)/N of all A
and B people in large lattices with N sites. There is no
need for any computer simulations in this simple limit
without interactions between people. In reality, one may
have a discrimination with positive h in one part of the
lattice and negative h in the rest of the lattice, leading to
segregation by discrimination.

Now we generalize the field to include besides this
discrimination h also the interactions of site i with its
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four nearest neighbours, of which nA are of type A and
nb = 4 − nA are of type B:

hi = (nA − nB)/T ′ + h (3)

where T ′ is the tolerance towards neighbours from the
other group; now also the probabilities

pA(i) = ehi/(ehi + e−hi),

pB(i) = e−hi/(ehi + e−hi) (4)

depend on the site i. This defines the standard Ising
model on the square lattice; of course many variations
have been simulated since around 1960, and theoretical
arguments showed Tc = 2/ ln(1 +

√
2) � 2.2. Thus for all

T ′ below Tc at h = 0 the population separates into large
B-rich and A-rich domains with composition (1 ± M)/2,
whose size increases towards infinity with time, while for
T ′ > Tc no such “infinitely” large domains are formed.
Thus we now define T = T ′/Tc such that for T < 1
we have segregation and for T > 1 we have mixing, at
zero field. Schelling starts with random configurations but
then uses more deterministic rules, analogous to T = 0.
However, only for T < 1 this spatial separation leads to
domains growing to infinity for infinite times on infinite
lattices.

For positive h, the equilibrium population always has
A as majority and B as minority. If we start with a A
majority but make h small but negative, then the system
may stay for a long time with an A majority until it sud-
denly “turns” [3] into a stronger B majority: nucleation in
metastable states, like the creation of clouds if the relative
humidity exceeds 100 percent (in a pure atmosphere).

(Physicists call the above method the heat bath al-
gorithm; alternatives are the Glauber and the Metropolis
algorithms. The choice of algorithms affects how fast the
system reaches equilibrium and how one specific configura-
tion looks like, but the average equilibrium properties are
not affected. That remains mostly true also if in Kawasaki
kinetics these updates of single sites are replaced by ex-
changing the people on two different sites. In contrast, if
the lattice is diluted by adding empty sites as in [1], then
the transition T may be different from 1.)

Of course, this Ising model is a gross simplification
of reality, but these simplifications emphasise the reasons
for spontaneous segregation. As stated on page 210 of
Fossett [3]: “Any choice to seek greater than proportionate
contact with co-ethnics necessarily diminishes the possi-
bility for contact with out-groups and increases spatial
separation between groups; the particular motivation be-
hind the choice (i.e., attraction vs. aversion) may be a
matter of perspective and in any case is largely beside the
point”.

4 Modifications

4.1 Asymmetric simulations

In the above model, the rules are completely symmetric
with respect to A and B. Fossett [3] reviews the greater
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Fig. 2. Composition of the population versus h at fixed T =
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willingness of the minority B in American racial relations
to mix with the majority A, compared with the willingness
of A to accept B neighbours. This we now try to simulate
by moving away from physics and by assuming that A is
more influenced by B than B is influenced by A. Thus if in
the above rule, 3 or 4 of the neighbours are A, then pA(i) =
pB(i) = 1/2. Mathematically, equation (3) is replaced by

hi = min(0, nA − nB)/T + h (5)

in our modification. The neutral case of probabilities 1/2
then occurs if A is replaced by B, or B is replaced by A,
in a predominantly A neighborhood.

Now the previous sharp transition at T = 1, h = 0
vanishes: Figure 1 shows smooth curves of M versus T for
h = 0, and Figure 2 shows smooth curves of M versus h
at three fixed T . Maybe this smooth behaviour is judged
more realistic by sociology. No segregation into large do-
mains happens, and in contrast to the symmetric Ising
model of the preceding section, the results are the same
whether we start with everybody A or everybody B.
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4.2 Empty spaces

Schelling had to introduce holes (=empty residences) on
his lattices since he did now allow a B person to become
A or vice versa (via moving to another city) and moved
only one person at a time (not letting two people exchange
residences). Now we check if holes destroy the sharp tran-
sition between self-organised segregation and no such seg-
regation. In physics this is called “dilution”, and if the
holes are fixed in space one has “quenched” dilution. In
this case the fraction of randomly placed holes must stay
below 0.407 to give segregation into “infinitely” large do-
mains; for larger hole concentration the lattice separates
into fixed finite neighbourhoods of people, separated by
holes, such that infinite domains are impossible (“perco-
lation” [13]). For housing in cities, it is more realistic to
assume that holes are not fixed: An empty residence is
occupied by a new tenant who leaves elsewhere the old
residence empty; physicists call this “annealed dilution”.

Thus besides A and B sites we have holes (type C) of
concentration x, while A and B each have a concentration
(1−x)/2. People can move into an empty site or exchange
residences (“Kawasaki kinetics”) with people of the other
group, i.e. A exchanges sites with B.

We also replaced the nA − nB in equation (3) by the
changes in the number of “wrong” neighbours. Thus we
calculate the number ∆ of A–B neighbour pairs before
and after the attempted move, and make this move with
a probability proportional to exp(−∆/T ′); no overall dis-
crimination h was applied. Thus this symmetric model
assumes that A does not like to have B neighbours, and B
equally does not like A neighbours, while both do not care
whether a neighbouring residence is empty or occupied by
people of the same group.

Now the total number of A, B and C sites is constant,
and a quantity like the above M no longer is useful. In-
spection of small lattices shows that again for low T large
domains are formed, while for large T they are not formed.
To get a more precise border value for T , we let A change
into B and B change into A. Then for T ≤ 1.2 we found
that one of the two groups (randomly selected) is com-
pletely replaced by the other, while for T ≥ 1.3 they both
coexist.

4.3 Schelling at positive T

Now we simulate a model closer to Schelling’s original ver-
sion, but at T > 0, while Schelling dealt with the deter-
ministic motion at T = 0. Thus the neighbourhood now
includes eight instead of four sites, i.e. besides the four
nearest-neighbours we also include the four next-nearest
(diagonal) neighbours. Let ns(i) and nd(i) be at any mo-
ment the numbers of same and different neighbours, re-
spectively, for site i, without counting holes, and let sign
be the function sign(k) =1 for k > 0, = 0 for k = 0 and
= −1 for k < 0. A person at site i has an “effort”

Ei = sign[nd(i) − ns(i)]. (6)
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Fig. 3. T dependence of the average number of same minus dif-
ferent neighbours, for three times t showing that about 1000 it-
erations are enough.

Analogously, Ej is based on the numbers of neighbours
of the same and the different type if the person would
actually move into residence j. In Schelling’s T = 0 limit,
nobody would move away from i if Ei < 0 and nobody
would move into an empty site j with Ej > 0; instead,
people with Ei > 0 move into the nearest vacancy j with
Ej ≤ 0.

In reality, one cannot always get what one wants and
may have to move into a “bad” neighbourhood. Thus at
positive “temperature” T we assume that the move from
i to j is made with probability

p(i → j) = e−∆/T /(1 + e−∆/T ) (7b)

where
∆ = Ej − Ei (7b)

is the effort the person at site i needs in order to move to
the vacancy at site j. For ∆ > 0, higher T correspond to
higher probabilities to move against the own wish, while
for the Schelling limit T → 0 nobody moves against the
own wish. For negative ∆ one “gains” effort and is likely to
make that move, with a probability the higher the lower
T is. For T = ∞ or ∆ = 0 the probability to move is
1/2. Each person trying to move selects randomly a va-
cancy from an extended neighbourhood up to a distance
10 in both directions; after ten unsuccessful attempts to
find any vacancy the person gives up and stays at the old
residence during this iteration. (We no longer distinguish
in this subsection between T and T ′. Note that Ei is not
an energy in the usual physics sense, and thus this model
is not of the Ising type.)

Figure 3 shows the average “neighbourhood” ns − nd,
not counting vacancies, for 1000 × 1000 lattices for t =
100, 1000 and 10 000 iterations (regular sweeps through
the lattice) at a vacancy concentration of 10%. Already
lattices of size 100 × 100 agree with Figure 3 apart from
minor fluctuations. Figure 4 shows that for low vacancy
concentrations one needs longer times: at 1% and t = 1000
the results agree with those at 0.1% and t = 10 000.
Although for T → 0 our model does not agree exactly
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with [1] (see Introduction) these figures show clearly the
Schelling effect at low T : A becomes surrounded mainly
with A neighbours and B with B neighbours, without any
outside discrimination. For large T , however, this bias be-
comes much smaller.

Figure 5 shows the overall fraction of group A (ig-
noring vacancies) in the interior of large A-rich domains.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250  300  350  400

Fig. 6. Distribution of the A population at T = 0.1 after
100 000 iterations, showing segregation. 10 percent are vacan-
cies. After 3 million iterations this sample had only one A and
one B domain.
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Figure 6 shows partly the time dependence of segregation,
very similar to standard Ising model simulations. For low
T we see how very small clusters of A sites increase in
size, without yet reaching the size of our 400×400 lattice.
(Continuing this simulation to t = 4 million gave only
one large A domain and one large B domain.) In contrast,
for high T these clusters do not grow (not shown). We
estimate that near T = 1.22 the phase transition occurs
between segregating and not segregating conditions, at a
vacancy concentration of 10 percent.

Starting in the upper half of the system with one group
and in the lower half with the other group, Figure 7 shows
for T < Tc how the interface between these to initial do-
mains first widens but then remains limited.

Finally, we also simulate what we believe to be the
original Schelling model and we generalise it to positive
T . At T = 0, each site of a square lattice is occupied
by a person from a (“colour”) group A, or by one from
group B, or is empty. People look at their 8 nearest- and
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next-nearest (diagonal) neighbour sites and if the major-
ity of neighbouring people belongs to the other group,
they move into an empty site. The selected empty site is
the closest one where the other group does not form the
majority of neighbours. Empty sites do not count in de-
termining these majorities. The initial configuration was
random.

Vinkovic and Kirman found that only small clusters
and no large domains grow [14]. If instead residences are
exchanged even if only equally attractive, then they saw
large domains. We confirmed both results. Such depen-
dence on whether the attractivity must increase, or merely
must not decrease, can be important in simple models [15]
but is unrealistic; other aspects of residences which are
ignored in a model prevent them to be exactly equally at-
tractive. Our finite temperatures below take care of such
minor influences from outside the model. (Ref. [14] erro-
neously claims that the Ising model changes the colour; see
Sect. 3 on Kawasaki kinetics.) Long before, Jones [2] found
large domains in a probabilistic modification of Schelling’s
model, by removing a random fraction of the people and
replacing them by people who feel not unhappy on the
vacated sites.

Our computer simulations of the above Schelling
model, see Figure 8a, show that after <10 it-
erations, the segregation process stops, even for
lattices of 40 000 × 40 000 sites. (Program from
stauffer@thp.uni-koeln.de: schelling16.f.) At this
stage, the excess of one colour over another in sub-regions
of 40 × 40 of a 400 × 400 lattice was not distinguishable
from the initial random distribution. Thus, the original
Schelling model leads to ordering on short length scales
but the small clusters of uniform colour do not grow fur-
ther and there is no significant segregation at lengths
above 20. Thus blocking of desegregation cannot only be
due to artificial configurations as in Section 2 but occurs
automatically in the original Schelling version.

In the “finite temperature” (T > 0) generalization
of the Schelling model agents move out (with probabil-
ity exp(−1/T )) even if their present location is accept-

able. Moreover, the agents may move (with probability
exp(−1/T )) into an undesired location. As seen in Fig-
ure 8b, for T ≥ 0.1, this insures the segregation of the
system towards increasingly macroscopic ghettos.

Real ghettos and other forms of racial, ethnic or reli-
gious segregation [16] consist of clusters much larger then
just a few dozen houses. They involve thousands and per-
haps a million people. This large-scale segregation seems
not to be modeled by Schelling, and neither he nor re-
cently Fossett [3] seem to have claimed so (Schelling’s ex-
periments involved only small numbers of A’s and B’s).

Thus, the simpler square lattice Ising model leads to
more realistic large scale segregation than the more com-
plicated Schelling model. Moreover the Ising model has a
simple, analytically tractable extension to “finite temper-
ature” (T > 0). The finite temperature amounts to the
systematic inclusion of stochastic effects in the determin-
istic (T = 0) model. In particular the “finite temperature”
Ising model predicts that the segregation disappears to-
tally and abruptly at a critical value (T = 2/ ln(1 +

√
2))

in units of the nearest neighbour interaction.

5 Discussion

The similarities between the Schelling and Ising models
have been exploited to introduce into the Schelling model
the equivalent of the temperature T . This turns out to
be a crucial ingredient since it ensures that in the pres-
ence of additional random factors the segregation effect
can disappear totally in a quite abrupt way. Thus cities
or neighbourhoods that are currently strongly polarized
may be transformed into an uniformly mixed area by tiny
changes in the external conditions: school integration, fi-
nancial rewards, citizen campaigns, sport centers, com-
mon activities, etc. One-dimensional models, like some of
Schelling’s work, are problematic since at positive T the
Ising and many other models do not have a phase transi-
tion, while they have one in two and more dimensions.

Besides reviewing the Ising model for non-physicists,
we introduced a few modifications to it. Together with
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those of [9,10] they are only some of the many possible
modifications one could simulate. Some confirm the result
of Schelling, that even without any outside discrimination,
the personal preferences can lead to self-organised segre-
gation into large domains of either mainly A or mainly B
people. Other modifications or high T (temperature, tol-
erance, trouble) prevent this segregation. Thus humans,
like milk and honey, are complicated but some of their
behaviour can be simulated.

The Schelling model is a nice example how research
could have progressed better by more interdisciplinary
cooperation between social and natural sciences, and we
hope that our paper helps in this direction.

We thank Maxi San Miguel for sending us [4], and A. Kirman,
M. Hohnisch, D. Chowdhury and G. Weisbuch for discussion,
and K. Müller for telling us about [2,14].

Appendix A: Kinetics

In statistical physics of large systems, including our simu-
lations here, configurations with an energy E are realized
with a probability P proportional to exp(−E/kBT ) where
T is the temperature and kB the Boltzmann constant.
With suitable units for T we set kB = 1.For our case here
one could call T also the tolerance; it also approximates
the many disturbances coming from outside the model.
If 1 and 2 denote two possible configurations which can
be reached directly from each other, then good algorithms
obey the detailed balance principle R12P1 = R21P2, where
R12 is the rate to get from state 1 to state 2, and R21 is
the inverse rate, while P1 and P2 are the two equilibrium
probabilities. Thus neither Mother Nature nor the algo-
rithms creates a carousel where, for example, the system
moves circularly 1 → 2 → 3 → 1 . . . among states of the
same energy: “perpetuum mobile”. With ∆ = E2 −E1 we
thus need R12/R21 = exp(−∆/T ). All algorithms obey-
ing this detailed balance lead sooner or later to the same
equilibrium distribution, provided each configuration can
in principle be reached from all other configurations, di-
rectly or indirectly (“ergodicity”).

In our model at finite temperature, the energy for a
single person just has two values depending on whether
or not the majority of the neighbours belong to the other
group, while in the Ising model is has many different values
depending on the number of neighbours of each type. We
also can move from each configuration in one or several
steps to all other configurations, by moving people around
on the lattice. Thus the above requirements are fulfilled.

One can distinguish between two main rules de-
termining the kinetics of the process: constant number
of people in each group, or fluctuating number of people in

each group. The second case can again be separated into
Glauber, Metropolis, or Heat Bath variants which is not
so important here. Also in the first case, often called the
Kawasaki model, various choices obeying detailed balance
and ergodicity have been employed for the exchange of a
person from group A with one from group B. For example,
one may restrict exchanges to nearest neighbours, or let
then exchange independent of the geographical distance
between them.

In all cases the equilibrium distribution is about the
same, while the time needed to reach equilibrium is dif-
ferent. More precisely, for fluctuating populations we may
end up with one domain covering the whole lattice, while
with constant A and B populations we may have two large
domains each covering about a half the lattice. Within
each of these two domains, the situation is the same as
within the single domain coming from fluctuating popula-
tions: each A site has there the same average number of A
neighbours etc. Thus Kawasaki kinetics is better to pro-
duce nice pictures of moving people while Glauber dynam-
ics etc speeds up the search for phase separation. These
kinetic differences are important technically, but are not
relevant for the main question whether or not large do-
mains =ghettos are formed. More details can be found in
the standard book of Landau and Binder [17], and more
simulations in [18].
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